hitex s
EMBEDDED TOODLS & SOLUTIONS
TESSY V5.1 Features

New features in TESSY V5.1 (compared to TESSY V4.3 / TESSY V5.0)

Frank Blichner, March 2023 --- 006

Contents
1 Preliminary Remark 0N VEISIONS.........coviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 1
P22 {211V oo 1 2
3 New View: TesSt COCKPIT VIBWccooieeeeeeeeeeee e 2
A COUB ACCESS ..ot ieiiiiii ettt e ettt e e ettt e e e et et e e e e et e e e e ettt e e e e sabaaeeeesaanseesestaaeeeens 3
R o 1Y/ LT G 0101V] = Vo [PPSR 4
51 Adding Coverage from Unit Testing of Different Test Objects ..., 4
5.2 Adding Coverage from Component Testing and Unit TeStiNg........ccoevveeieieie e, 5
6 New Report: Test SUMMary REPOITuviiiiiiiiiie e 6
7 COVEIAgE REVIEWSuuiiiiiiiiiiiiitiiiittieeitita bbb nnnes 8
8 Changed-based TeSHNG........cciiii e 9
9 Improved Assignment Of TESt Data.........cooveeeeeeeeiieeeeeeeee 9
10 New Command: DebuUg TeSt.......uiiiiiiieiiieece e e e 10
11 Changed BENAVIOXooviiiiiiiiiiiiiiiiiiieeeeeeeeee e 10
11.1 Coverage in the TeSt ProjeCt VIEWcccooii e i 10
11.2 Effect of MOAUIE ANAIYSIScoco o 11
12 THE AULNOT et e e e e e e e e a e e e e eraaas 11

1 Preliminary Remark on Versions

TESSY V4.3 runs under Windows. TESSY V5.0 is the Linux variant of TESSY V4.3.
With respect to features, TESSY V5.0 is identical to TESSY V4.3.

Identical Features V4.3 V5.0
Identical Features V5.1 V5.1

Fig. 1: TESSY V5.1 is available on Windows and Linux

TESSY V5.1 is available on Windows and Linux with identical features. A license for
TESSY is valid for Windows and Linux.

TESSY V5.1 Features - 006 © Hitex GmbH 2024 Page 1/11

Emau.,a Gofbsare M@

hitex s

EMBEDDED TOOLS & SOLUTIONS

2 New Ilcons

All icons were re-designed. Especially the coverage icons now require less space,
allowing for narrower columns in the respective views. Below are some examples.

a8, A

v 2| P~BvZ|d = EE

Fig. 2: Redesigned icons in the Test Project view

VIR SRR I IR

Fig. 3: Redesigned icons in the Test Data view

QW mMEEY /7@ H S|P
Fig. 4: Redesigned icons in the RQMT Explorer view

3 New View: Test Cockpit View

Based on the source files of the project, both the results of test execution as well as
the achieved coverage are summarized.

&% Test Cockpit k|| |PpPr@~yS|lu2|@ES E T8

Filter source files, test objects and tasks

Source Files / Test Objects / Tasks [>] CA Hc c1 pe e Message A
* ChangedBasedTesting - v
CodeAccess g

CoverageReview
v ©g HyperCoverage
v Tgct+ut
v | stack 51.c
@ pop
@ push /v
@ tick X v =

X X X X X |
ol

Fig. 5: The Test Cockpit view shows information related to source files

The Test Completion Rate column 2 shows the relation of the number of test
objects with test cases, that are not yet executed, to the total number of test objects
with test cases of a source file. Test objects in that source file, which have no tests at
all, are not considered in this calculation. Example: If a source file contains 4 test
objects, and 2 of these test objects have executed test cases, and 1 test object has
testcases, that were not executed, and 1 test object has no test cases, the test
completion rate is 66%.

TESSY V5.1 Features - 006 © Hitex GmbH 2024 Page 2/11

Emou.,s Sofbrsare @m}

hitex s

EMBEDDED TOOLS & SOLUTIONS

4 Code Access
Is there a variant of the source code which is endangered not to be tested at all?

A source code module is assigned to a TESSY module and related to a TESSY
module certain preprocessor constants are #defined (or not). During analysis of the
source code assigned to a certain TESSY module, the #defined preprocessor
constants are considered. So TESSY can determine which source code lines will be
executed with respect to the #defined preprocessor constants for the TESSY module
in question. The same source code module can be assigned to a different TESSY
module, having different #defined preprocessor constants. During analysis of this
TESSY module TESSY can also determine the source code lines that will be
executed considering the #defined preprocessor constants of this TESSY module.

TESSY can combine the results of the analyses of the different TESSY modules for
the same source file. So TESSY knows which source code line can be executed by
the tests related to one or the other TESSY module. Consequently, TESSY also
knows which executable source code line cannot be executed, because no TESSY
module #defines an appropriate preprocessor constant. This is a very important
feature, because it points to potentially executable source code lines that will not
undergo testing because they cannot be executed.

short result;

void func (void)

{

result 0;
$ifdef VARIANT 1
result i -
fendif
$ifdef VARIANT 2
result = 2;
fendif
}

Fig. 6: No analysis was done in which VARIANT _2 was defined

For instance, if in the example above this source code was not analyzed in a TESSY
module for which VARIANT _2 was defined. Hence, the instruction “result = 2;” will
not be tested. Therefore, TESSY highlights line 10.

This is reflected in the Code Access result by TESSY. The example above has seven
lines with code (1, 3, 4, 5, 7, 10, 12), of which one line (line 10) cannot be executed.
6/7 = 0.85.

TESSY V5.1 Features - 006 © Hitex GmbH 2024 Page 3/11

Emau.,a Gofbsare M@

hitex s

EMBEDDED TOOLS & SOLUTIONS

~

&% Test Cockpit rv|Cdv|Z|Ppr@~S |02 | @ES 8 =0

Filter source files, test objects and tasks

Source Files / Test Objects / Tasks > A HC c1 pE e Message A
ChangedBasedTesting - v -
v @ CodeAccess v X ® ¢
|= variants_if 51.c - - & -
I3 variants_ifdef 51.c v X @ 8
v == CoverageReview _ . |Code Access: 85.71 % (6/7)

Fig. 7: Code Access is not at 100%, because one code line cannot be executed

5 Hyper Coverage

Coverage from unit testing of different test objects can be added, as can coverage
from component/integration testing and coverage from unit testing. The latter allows

technically to start with component/integration testing and fill the gap to 100% by unit
testing.

5.1 Adding Coverage from Unit Testing of Different Test Objects

:# Test Data of 'inc’

Filter notes

o void inc (void) static void inc dec(direction dir)
v nputs —
v 2 Globals { : .) { sl o
® intgbla 3 inc_dec (up); {”
v 2 Outputs } .
v & Globals SOSCH L
® intgbl_a 4 gbl a+t++;
break;
:# Test Data of ‘dec’ case down:
gbl a——;
Filter notes bregk B
;
® 1.1 void dec (void) default:
v I'r:puts { break;
v W Globals inc_dec (down) ; }
® intgbl_a 3 } = }
v A Outputs
v 7 Globals
® intgbl_a 2

Fig. 8: Two test cases cover parts of the called unit inc_dec()

In the figure above one test case was executed for the test object inc(). This test case
covers the test object inc() to 100% and also covers the case-label “up” (lines 13 to
15) in the switch instruction of the called test object inc_dec().

In the figure above another test case was executed for the test object dec(). This test
case covers the test object dec() to 100% and also covers the case-label “down”
(lines 16 to 18) in the switch instruction of the called test object inc_dec().

TESSY V5.1 Features - 006 © Hitex GmbH 2024 Page 4/11

E w-ﬁ-miol.wa Soldrvare flumﬂdy’

hitex s

EMBEDDED TOOLS & SOLUTIONS

The label “default” (lines 19 and 20) in the switch instruction of the test object
inc_dec() is not covered. It can neither be covered by a call from inc() nor by a call
from dec().

Therefore, we need a third test case for the test object inc_dec(). This test case calls
inc_dec() with an illegal parameter value, e.g. 99. This covers the label “default”.

static void inc _dec(direction dir)

Test Data of 'inc_dec’ {
Filter notes switch (dir)
® 1.1 {
~ N Inputs case up:
<4y + -
v 7= Globals gbl a++;
® intgbl_a 100 break;
v w= Parameter case down:
® direction dir 99 gbl a-——;
v A Outputs break;
v Globals default:
® intgbl_a 100 break;

}

Fig. 9: A third test case calls inc_dec() and covers the label “default”

It is not necessary to execute three test cases for inc_dec() to reach 100% branch
coverage for inc_dec(), as it would have been the case without Hyper Coverage.

5.2 Adding Coverage from Component Testing and Unit Testing

It is also possible to add code coverage from component testing and unit testing. For
instance, one might start testing by component testing and this tests only the normal
behavior of the component under test, but not behavior under error conditions, e.g.
the defensive code that might be present in the component. l.e. one does not reach
100% coverage for the component under test. The missing coverage can be “added”
by unit testing one or more units in the component, thereby executing the hitherto
untested code. So, 100% coverage for the component can be achieved. Also 100%
coverage for the unit(s) can be achieved without having to execute the parts in the
unit during unit testing that were already covered during component testing.

TESSY V5.1 Features - 006 © Hitex GmbH 2024 Page5/11

Ewmou.,é Sofbvoare ML}

void push(int element)

{
if (MAX_ELEMENTS <= next_free_element)
{

error();

else
{

Stack[next_free_element] = element;

next_free element++;
}
}

Coverage from Component Testing

Fig. 10:

F
10
CO .3

.

-

void push(int element)
{
if (MAX ELEMENTS <= next_free_element)
{
error();
}
else
{

Stack[next_free element] = element;

next_free element++;
)
}
Coverage from Unit Testing

6 New Report: Test Summary Report
This report provides the current state of the test project based on source files and

tasks.
Summary
Total Source Files: 9
Successful: 1
Incomplete: 0
Not Executed: 5
No Tests: 0
Failed: B
Total Test Objects: 19
Successful: 5
Incomplete: 0
Not Executed: v10
Failed: 4
Fig. 11:

TESSY V5.1 Features - 006

10—

0

Excerpt form a Test Summary report

© Hitex GmbH 2024

Ewmou..a Sofbuare M@

hitex s

EMBEDDED TOOLS & SOLUTIONS

@

6

1 <'[i::> 5
[—

-

)

void push(int element)
{
if (MAX_ELEMENTS <= next_free_element)
{
error();
}
else
{
Stack[next_free_element] = element;
next_free element++;
}
}

Added Coverage

Adding coverage from component/integration testing and unit testing

Results per Source File

Successful
Incomplete
Not Executed
No Tests
Failed

Results per Test Object

4
Successful
Incomplete
Not Executed
5 Failed
Page 6/11

hitex s
EMBEDDED TOODLS & SOLUTIONS

C1 MC/DC Test Cases Test Overall

No. Source Files / Test Objects CA HC Number of Code
i Result Resuli]

Lines

S(SOURCEROOT)ASAPConversion

1 asap_sample.c | - - 14 - V| v
S(SOURCEROOT \ASAPConversion\Original

2 asap_sample.c - - 14 5| v v
S$(SOURCEROOT)\BatchRestore

3 categorize.c | 100% 100%| 13

categorize | 100% 100%
4 is_triangle.c | 100% A 45|

is_equilateral 100% v 100%

is_isosceles 75% 83.33% 10 of 12 passed

is_right | { 1 of 14 failed | |

is_scalene U Gofspassed O
~ is_triangle X 2 of 8 fadled | |
Fig. 12: Excerpt form a Test Summary report

Source Files Coverage Details

The following list of source files shows the details of missing coverage for individual test objects.

Source File 1 (asap_sample.c)

Path S(SOURCEROOT)\ASAPConversion
SHA1 aBache4db754476474cd 10113 13ded084ff6ce0
Source File 2 (asap_sample.c)
Path $(SOURCEROOT)\4SAPConversion\Original
SHA1 aBache4db754476474cd 10113 13ded084ff6ce0
Not tested!
Source File 3 (categorize.c)
Path $(SOURCEROOT)\BatchRestore
SHA1 7703707 1af9ccic372e43f69d9fcc4650a58377
Code Access (CA) 100%
Hyper Coverage (HC) 100%
Test Object categorize v
1100% 1100%
Contributing Modules and Test Objects
Hitex-Examples/BatchRestore_0/Categorize/categorize
Hitex-Examples/BatchRestore/Cateaorize/cateacrize
Fig. 13: Excerpt form a Test Summary report
TESSY V5.1 Features - 006 © Hitex GmbH 2024 Page 7 /11

hitex s

EMBEDDED TOOLS & SOLUTIONS

7 Coverage Reviews

If source code lines are not executed / covered during testing, those lines can be
marked by comments (predefined or individual).

< Fault Inje... | ¥ Mutationsi@.&all Pair C\-L- Coverage.. X | = B || B C1-Switch-explicit-default-wo-vo
v sB @AS| e
break;
44 case 1:
Source File / Function / Co.. Comment 45 N
v |= $(SOURCEROOT)\Cover 2 0 break;
~ © func01 case 2:

L 53-55 Unreachable default branch 5 £20 7
49 break;

5C case 3:
£3():
[|52 break;
(|52 default:

5 error () ;
break;

Filter coverage reviews

?; }

Fig. 14: An unreachable default label was reviewed and marked manually

This information is transferred to the Test Summary report.

Test Object func01
Cc1 MC/DC
80% 80%

Contributing Modules and Test Objects

Hitex-Examples/Coverage/Experiments/C 1-Switch/CoverageReview/C1-Switch-explicit-default_51/func01
Unreached Line Numbers

53: Missing MC/DC coverage (Reviewed: Unreachable default branch)

53: Missing C1 coverage (Reviewed: Unreachable default branch)

Fig. 15: Resulting effect in the Test Summary report

TESSY V5.1 Features - 006 © Hitex GmbH 2024 Page 8/11

Ewwauq Sofbsare M;?

hitex s
EMBEDDED TOODLS & SOLUTIONS

8 Changed-based Testing

If a change in a source file (with several test objects in it) only affects a single test
object, TESSY will only execute the test cases for the affected test object. This
intelligent re-testing saves test execution time.

P Execute Test O X

Edit Test Execution Settings
Select test execution actions and choose instrumentation.

Execution Actions

[] Force check interface [JForce generate driver

Run

Execution Options

[“]Skip test objects with valid result Abort on missing stub code
|| Retry aborted execution

Additional Execution Types

[] Run without instrumentation [] Run with test data pattern
[]Run mutation test

Fig. 16: This execution setting executed only tests for changed test objects

9 Improved Assignment of Test Data

An automatic reuse of test data for test objects with changed interface will now be
done if:

- Variables were only added to or only removed from the interface.

- Parameters were only added to or only removed from the interface.
- The return type was changed from any type to void or vice versa.

- The scope of variables was changed.

- Extern function calls, which were not stubbed, were changed.

This feature is available since TESSY V5.1.8.

TESSY V5.1 Features - 006 © Hitex GmbH 2024 Page 9/11

E W-E-miol.wa Soldrvare M%}

hitex s

EMBEDDED TOOLS & SOLUTIONS

10 New Command: Debug Test

In the Test Project view:

PRy |
Execute Test

vi*2[XK~v= 0O

Ctrl+E

4% Debug Test

Ctrl+Alt+E

Edit Test Execution Settings... Ctrl+Shift+E

Fig. 17: The new command “Debug Test”

This is an abbreviation for executing the test with the test execution setting
“Instrumentation” disabled and “Define breakpoint at test object” enabled.

This feature is available since TESSY V4.3.15.

11 Changed Behavior

11.1 Coverage in the Test Project view

The default for the treatment of the coverage result in the Test Project view was
changed in TESSY V5.1. The coverage results will no longer be applied to the status
icons of test collections, modules and test objects.

Preferences

‘ type filter text ‘

Attribute Definitions
C/C++

CTE

Coverage Review Set
Coverage Settings
Dialog Settings
General

Interface Dictionary
Metrics

Mutation Tests

Script Editor

Static Analysis

Tasks

Test Cockpit Settings
Test Data Settings
Test Execution Settinc
Test Interface Setting:

Test Execution Settings

Remember instrumentation settings
O Disabled

@ Globally for all test objects

O Individually for each test object

[Remember "Skip test objects with valid result” option
[C] Remember “Retry Aborted Execution" option
[]Remember "Define Breakpoint" option

Update passing directions on module analysis

Enable parallel execution

Compare source file checksums before execution
Abort execution when stub code is missing for a non-void function
Include *none* values in result XML files

Clear console before execution

[Iclear problems view before execution

Show console on error

Test Project Settings ﬁ Apply coverage to test result]

Fig. 18: You can revert to the pre-V5.1 behavior in the Windows preferences

TESSY V5.1 Features - 006 © Hitex GmbH 2024 Page 10/11

Ewmou.} Sofbuare @mm}

hitex s

EMBEDDED TOOLS & SOLUTIONS

11.2 Effect of Module Analysis

Results for unchanged test objects with unchanged test data will be visible in the Test
Cockpit view, even after a module analysis.

Preferences
| type filter text || Test Cockpit Settings
éttcnbute Ll ii Refresh Test Cockpit View on startup
C4E++ Require testing identical test objects for all variations of a source file

Require unit tests for all functions
Keep test results from last execution unless the source file or test data has changed]

Coverage Review Set
Coverage Settings
Dialog Settings
General | .C, .CPpp, .C++, .CXX
Interface Dictionary
Metrics

Mutation Tests

Script Editor

Static Analysis

Tasks

Test Cockpit Settings
Test Data Settings
Test Execution Settinc
Test Interface Setting:
Test Project Settings
Test Report Options

Included source file types

Exclude list for current project

Fig. 19 You can revert this behavior in the Windows preferences

12 The Author
Frank Bluchner, Hitex GmbH, frank.buechner@hitex.de

Any comments or questions to this document are welcome.

TESSY V5.1 Features - 006 © Hitex GmbH 2024 Page 11 /11

Ebieololivg Sofftvare d.mﬂt;?

mailto:frank.buechner@hitex.de

